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Abstract: Enantiomerically pure solenopsin A (1) was prepared in 11 steps from L-aspartic acid (3) in an overall
yield of 17%. 6R-(N-tosylamino}heptadecan-2-one (8), prepared from 3, underwent cyclization on acid catalysis to N-
tosylamino-2,3-dehydro-2-methyl-6R-undecylpiperidine (9), which on reduction and deprotection gave 1.

The solenopsins A and B (1 and 2) are constituents of the venom of the fire ant, Solenopsis invicta (= S.
saevissima), the habitat of which is the south-east part of the United States of America (Scheme 1).! Both
molecules are biologically active in having hemolytic, insecticidal and antibiotic properties.2 Despite the ap-
parent simplicity of their structures, the synthesis of the enantiomerically pure isomers is not trivial. 34 The
essential problem lies in the creation of the trans configuration for the 2,6-dialkyl substituents. So far four
solutions have been reported. The first entails the transfer of chirality on successive alkylations of 2-cyano-6-
oxazolopiperidine.5 The second involves the diastereoselective reduction of a bornyl B-keto ester to a chiral
secondary alcohol which by conversion to its azide and subsequent internal dipolar addition controls the con-
struction of the 2-methylpiperidine ring.6 The third depends essentially on the cyclization of 6R-aminohep-
tadecan-2-one to the related 1,2-dehydropiperidine which is then selectively reduced.” The fourth solution ex-
ploits the innate chirality of 5-methyl L-glutamate which on elaboration provides an analogous amino-ketone
which undergoes stereocontrolled cyclization.8% We now describe a practical enantiospecific synthesis of I
that embodies the chief features of the last two approaches, but which takes advantage of our procedure for
preparing enantiomerically pure B-amino acids from aspartic acid. 10
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L-Aspartic acid (3) was first transformed in 4 steps into the key intermediate, 10 the N-protected iodo-
homoserine ester 4 (Scheme 2). Next, treatment of 4 with lithium didecylcuprate in THF gave the undecyl-B-
amino ester 5 in 86% yield. Reduction of the ester group with diisobutylaluminum hydride (DIBAH) fur-
nished the corresponding aldehyde 6 in similar yield. Wittig reaction with acetylmethylidenetriphenyl-
phosphorane gave exclusively the o,B-unsaturated ketone 7, which was hydrogenated over Adams catalyst to
the methyl ketone 8. Both 7 and 8 were formed in essentially quantitative yield.!! Cyclization was achieved
by catalysis with p-toluenesulfonic acid. The resulting dehydropiperidine 9, obtained in 73% yield,!! was then
submitted to sodium cyanoborohydride in the presence of trifluoroacetic acid (TFA) in CH,Cl,. Reduction af-
forded the trans and cis piperidines 10 and 11 as an inseparable mixture in a ratio of 7:2 in 98% yield.!2 The
identity of each isomer was confirmed by the independent preparation of the cis isomer 11 by the catalytic
hydrogenation of 9,13
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Finally, deprotection of the isomers was effected with sodium naphthalide in dimethoxyethane (DME)
(Scheme 3). Purification of the resulting oil by column chromatography over alkaline AlyO3 delivered pure
solenopsin A (1) of the 2R,6R configuration in 72% yield.!4 The synthetic solenopsin A possesses spectral
data identical to those of the natural material and displays commensurate optical activity, 15
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The reduction of 9 proceeded with significant stereocontrol (¢rans:cis ratio = 7:2). Nevertheless, com-
parison with similar reductions of the N-t-butoxycarbonyl,k and N-benzyl4i analogues of 9 (trans:cis ratio =
9:1) suggests that the N-tosyl group in the iminium cation 13 derived from 9 is not so susceptible to Al2
strain. 16 In other words, the preference for the axial half-chair conformation and its attack by hydride (13a —
10) over its equatorial counterpart (13e — 11) is less marked (Scheme 4).
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The advantages of the present synthesis are its operational simplicity and conciseness. The same proce-
dure should also be applicable for preparing 2,5-dialkylpyrrolidines of natural occurrence. Such studies are
under way and the results will be reported in due course.
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8.2 Hz, 2H), 9.62 (t, J/ = 1.2 Hz, 1H); 7, 0.86 (t, J = 6.8 Hz, 3H), 1.07-1.50 (m, 20H), 2.16 (s, 3H), 2.33
(dd, /= 7.3, 13.0 Hz, 2H), 2.40 (s, 3H), 3.23-3.38 (m, 1H), 4.58 (d, /= 8.2 Hz, 1H), 596 (d, J =
15.8 Hz, 1H), 6.60 (dt, J = 15.8, 7.3 Hz, 1H), 7.27 (d, J = 8.1 Hz, 2H), 7.73 (d, J = 8.1 Hz, 2H); 8, 0.88
(t, J = 6.7 Hz, 3H), 1.05-1.41 (m, 24H), 2.09 (s, 3H), 2.33 (t, J = 6.9 Hz, 2H), 2.42 (s, 3H), 3.15-3.22 (m,
1H), 4.40 (d, / = 8.1 Hz, 1H), 7.29 (d, J = 8.1 Hz, 2H), 7.75 (d, J = 8.4 Hz, 2H); 9, 0.88 (t, / = 6.7 Hz,
3H), 1.26 (s, br, 20H), 1.05-1.90 (m, 4H), 2.12 (s, br, 3H), 2.40 (s, 3H), 4.04-4.18 (m, 1H), 4.99-5.06
(m, 1H), 7.27 (d, J = 8.1 Hz, 2H), 7.66 (d, J = 8.1 Hz, 2H).

Reduction of 9 with NaCNBH4/TFA at -45°C gave the trans and cis N-tosyl piperidines 10 and 11. The
crude oil was purified over silica gel (eluent, hexane; EtQAc 4:1). The isomer ratio was estimated from
the intensity of the C2-H and Me signals. 'H-NMR (400 MHz, CDCl3) 0.88 (t, J = 6.8 Hz, 3H), 1.23 (d,
J = 6.9 Hz, 0.78 x 3H, trans isomer), 1.25 (m, br, 18H), 1.30 (d, J = 6.9 Hz, 0.22 x 3H, cis isomer),
1.35-1.82 (m, 8H), 2.40 (s, 3H), 3.56-3.67 (m, 0.78H, trans isomer), 3.93-4.01 (m, 0.22H, cis isomer),
4.10-4.20 (m, 1H), 7.25 (d, J = 8.4 Hz, 2H), 7.71 (d, J = 8.4 Hz, 2H).

A pure sample of the cis isomer (11) was obtained by hydrogenation of 9 over 10% Pd/C in MeOH.
IH-NMR (400 MHz, CDCl3): 0.89 (t, J = 6.8 Hz, 3H), 1.20-1.41 (m, 20H), 1.30 (d, J = 6.9 Hz, 3H),
1.46-1.80 (m, 6H), 2.41 (s, 3H), 3.92-3.99 (m, 1H), 4.10-4.18 (m, 1H), 7.26 (d, J = 8.4 Hz, 2H), 7.71 (d,
J =8.4 Hz, 2H).

Good separation was obtained by using basic aluminum oxide, Fluka, type 5016, and eluting with Et,0
and then EtyO containing 1% i-PrNH,. The cis isomer (12), isosolenopsin A, was also obtained as an oil
(17% yield): HCI salt [a}p22 = -10.6° (c = 0.33, CHCl5); IR 2927, 2854, 1602, 1461, 1377, 1261, 1097,
1016, 937, 875, 804; 'H-NMR (200 MHz, CDCls): 0.86 (t, J = 6.8 Hz, 3H), 1.06 (d, J = 6.2 Hz, 3H),
1.24 (s, br, 18H), 1.30-1.98 (m, 9H), 2.41-2.52 (m, 1H), 2.53-2.70 (m, 1H); }*C-NMR (50 MHz,
CDCl3): 14.06, 22.63, 22.90, 24.76, 25.93, 29.29, 29.55, 29,58, 29.61, 29.77, 31.86, 32.02, 34.22, 37.24,
5247, 57.11.

Pure solenopsin A (1) was isolated as an oil in 72% yield: [a]p20 = -1.30° (¢ = 1.3, MeOH), lit.” [a]p?3
= -2.2° (c = 0.8, MeOH); HCI salt m.p. 147-150°C, lit.5 146°C; HCl salt [a]p?0 = -7.7° (c = 0.51,
CHCly), lit.7 [a]p?3 = -7.6° (c = 0.7, CHCl3); free base, lH-NMR (400 MHz, CDCl5): 0.88 (t, J =
6.8 Hz, 3H), 1.07 (d, J = 6.6 Hz, 3H), 1.26 (s, br, 18H), 1.38-1.70 (m, 9H), 2.83-2.90 (m, 1H), 3.12-3.20
(m, 1H); 13C-NMR (100 MHz, CDCly): 14.08, 19.58, 21.24, 22.66, 26.46, 29.33, 29.62, 29.64, 29.78,
30.82, 31.90, 33.01, 34.10, 45.82, 50.82; MS 252 (42), 238 (100), 224 (11), 210 (22), 184 (38), 98 (99);
Anal. calcd for HCl salt, Cj7H36CIN: C, 70.43; H, 12.52; N, 4.83; found C, 70.24; H, 12.40; N, 4.72;
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