An Enantiospecific Synthesis of Solenopsin A

Charles W. Jefford* and Jian Bo Wang

Department of Organic Chemistry, University of Geneva 1211 Geneva 4, Switzerland

Key words: 2.6-Dialkylpiperidine, innate chirality, hydride reduction, iminium cation

Abstract: Enantiomerically pure solenopsin A (1) was prepared in 11 steps from L-aspartic acid (3) in an overall yield of 17%. 6R-(N-tosylamino)heptadecan-2-one (8), prepared from 3, underwent cyclization on acid catalysis to N-tosylamino-2,3-dehydro-2-methyl-6R-undecylpiperidine (9), which on reduction and deprotection gave 1.

The solenopsins A and B (1 and 2) are constituents of the venom of the fire ant, *Solenopsis invicta* (= S. *saevissima*), the habitat of which is the south-east part of the United States of America (Scheme 1).¹ Both molecules are biologically active in having hemolytic, insecticidal and antibiotic properties.² Despite the apparent simplicity of their structures, the synthesis of the enantiomerically pure isomers is not trivial.^{3,4} The essential problem lies in the creation of the *trans* configuration for the 2,6-dialkyl substituents. So far four solutions have been reported. The first entails the transfer of chirality on successive alkylations of 2-cyano-6-oxazolopiperidine.⁵ The second involves the diastereoselective reduction of a bornyl β -keto ester to a chiral secondary alcohol which by conversion to its azide and subsequent internal dipolar addition controls the construction of the 2-methylpiperidine ring.⁶ The third depends essentially on the cyclization of 6R-aminoheptadecan-2-one to the related 1,2-dehydropiperidine which is then selectively reduced.⁷ The fourth solution exploits the innate chirality of 5-methyl L-glutamate which on elaboration provides an analogous amino-ketone which undergoes stereocontrolled cyclization.^{8,9} We now describe a practical enantiospecific synthesis of 1 that embodies the chief features of the last two approaches, but which takes advantage of our procedure for preparing enantiomerically pure β -amino acids from aspartic acid.¹⁰

L-Aspartic acid (3) was first transformed in 4 steps into the key intermediate, ¹⁰ the N-protected iodohomoserine ester 4 (Scheme 2). Next, treatment of 4 with lithium didecylcuprate in THF gave the undecyl- β amino ester 5 in 86% yield. Reduction of the ester group with diisobutylaluminum hydride (DIBAH) furnished the corresponding aldehyde 6 in similar yield. Wittig reaction with acetylmethylidenetriphenylphosphorane gave exclusively the α , β -unsaturated ketone 7, which was hydrogenated over Adams catalyst to the methyl ketone 8. Both 7 and 8 were formed in essentially quantitative yield.¹¹ Cyclization was achieved by catalysis with *p*-toluenesulfonic acid. The resulting dehydropiperidine 9, obtained in 73% yield,¹¹ was then submitted to sodium cyanoborohydride in the presence of trifluoroacetic acid (TFA) in CH₂Cl₂. Reduction afforded the *trans* and *cis* piperidines 10 and 11 as an inseparable mixture in a ratio of 7:2 in 98% yield.¹² The identity of each isomer was confirmed by the independent preparation of the *cis* isomer 11 by the catalytic hydrogenation of 9.¹³

Finally, deprotection of the isomers was effected with sodium naphthalide in dimethoxyethane (DME) (Scheme 3). Purification of the resulting oil by column chromatography over alkaline Al_2O_3 delivered pure solenopsin A (1) of the 2R,6R configuration in 72% yield.¹⁴ The synthetic solenopsin A possesses spectral data identical to those of the natural material and displays commensurate optical activity.¹⁵

The reduction of 9 proceeded with significant stereocontrol (*trans:cis* ratio = 7:2). Nevertheless, comparison with similar reductions of the N-*t*-butoxycarbonyl,^{4k} and N-benzyl⁴ⁱ analogues of 9 (*trans:cis* ratio = 9:1) suggests that the N-tosyl group in the iminium cation 13 derived from 9 is not so susceptible to $A^{1,2}$ strain.¹⁶ In other words, the preference for the axial half-chair conformation and its attack by hydride (13a \rightarrow 10) over its equatorial counterpart (13e \rightarrow 11) is less marked (Scheme 4).

The advantages of the present synthesis are its operational simplicity and conciseness. The same procedure should also be applicable for preparing 2,5-dialkylpyrrolidines of natural occurrence. Such studies are under way and the results will be reported in due course.

Acknowledgment. We thank the National Science Foundation (grant No 20-32'166.91) for support of this work.

REFERENCES AND NOTES

- 1. J.G. MacConnell, M.S. Blum, H.M. Fales, Tetrahedron 1971, 27, 1129.
- 2. G.A. Androuny, V.J. Derbes, R.C. Jung, Science 1959, 130, 449,
- 3. For reviews on the synthesis of piperidines see: C.J. Wang, M.A. Wuonola, Org. Prepns. Procedures Int. 1992, 24, 583; M. Rubiralta, E. Giralt, A. Diez "Piperidine: Structure, Preparation, Reactivity and Synthetic Applications of Piperidine and its Derivatives", Elsevier, New York, N.Y. 1991.
- Many syntheses of racemic solenopsins (A and B) have been reported: a) K. Fuji, K. Ichikawa, E. Fujita, Chem. Pharm Bull. 1979, 27, 3183; b) Y. Matsumura, K. Maruoka, H. Yamamoto, Tetrahedron Lett. 1982, 23, 1929; c) S. Sakane, Y. Matsumura, Y. Yamamura, Y. Ishida, K. Maruoka, H. Yamamoto, J. Am. Chem. Soc. 1983, 105, 672; d) W. Carruthers, M.J. Williams, M.T. Cox, J. Chem. Soc., Chem. Commun. 1984, 1235; e) Y. Nakazono, R. Yamaguchi, M. Kawanishi, Chem. Lett. 1984, 1129; f) B.P. Mundy, M. Bjorklund, Tetrahedron Lett. 1985, 26, 3899; g) K.K. Takahashi, H. Kurita, K. Ogura, H. Iida, J. Org. Chem. 1985, 50, 4368; h) R. Yamaguchi, Y. Nakazono, T. Matsuki, E. Hata, M. Kawanisi, Bull. Chem. Soc. Jpn. 1987, 60, 215; i) H.H. Wasserman, V. Rusiecki, Tetrahedron Lett. 1988, 29, 4977; j) T. Nagasaka, H. Hayashi, M. Kumakawa, M. Sakamoto, Heterocycles 1989, 29, 2157; k) D.L. Comins, M.A. Weglarz, J. Org. Chem. 1991, 56, 2506.
- 5. D.S. Grierson, J. Royer, L. Guerrier, H.-P. Husson, J. Org. Chem. 1986, 51, 4475.
- 6. D.F. Taber, P.B. Deker, H.M. Fales, T.H. Jones, H.A. Lloyd, J. Org. Chem. 1988, 53, 2968.
- 7. Y. Ukaji, T. Watai, T. Sumi, T. Fujisawa, Chem. Lett. 1991, 1555.
- 8. H. Kotsuki, T. Kusumi, M. Inoue, Y. Ushio, M. Ochi, Tetrahedron Lett. 1991, 32, 4159.
- Yet another approach started from optically active 6-methyl-2-piperidone. Unfortunately, conversion to solenopsin A by means of the N-acyllactam rearrangement was not really successful as the yield was so poor: R.K. Hill, T. Yuri, *Tetrahedron* 1977, 33, 1569.
- 10. C.W. Jefford, J.B. Wang, Tetrahedron Lett. 1993, in press.
- 11. Compounds 5-9 were obtained in a pure state by column chromatography over silica gel (eluent: hexane: EtOAc). All are oils, except 8 which is crystalline (m.p. 65-66°C, from hexane). Optical rotations ([α]_D²⁰) were determined in CHCl₃ and had the following values: 5, +14.2° (c 1.4); 6, +13.1° (c 1.3); 7, +36.1° (c 1.1); 8, +9.2° (c 1.1); 9, -178.4° (c 1.5). ¹H-NMR (200 MHz, CDCl₃): 5, 0.86 (t, J = 6.7 Hz, 3H), 1.20 (t, J = 7.1 Hz, 3H), 1.10-1.60 (m, 20H), 2.37 (dd, J = 2.0, 5.2 Hz, 2H), 2.40 (s, 3H), 3.40 (m, 1H), 4.05 (qd, J = 7.1, 1.2 Hz, 2H), 5.26 (d, J = 9.0 Hz, 1H), 7.26 (d, J = 8.4 Hz, 2H), 7.73 (d, J = 8.5 Hz, 2H); 6, 0.87 (t, J = 6.8 Hz, 3H), 1.05-1.51 (m, 20H), 2.41 (s, 3H), 2.59 (t, J = 1.2 Hz, 1H), 2.62 (t, J = 0.4 Hz, 1H), 3.49-3.61 (m, 1H), 4.86-4.93 (t, br, 1H), 7.29 (d, J = 8.5 Hz, 2H), 7.73 (d, J =

8.2 Hz, 2H), 9.62 (t, J = 1.2 Hz, 1H); 7, 0.86 (t, J = 6.8 Hz, 3H), 1.07-1.50 (m, 20H), 2.16 (s, 3H), 2.33 (dd, J = 7.3, 13.0 Hz, 2H), 2.40 (s, 3H), 3.23-3.38 (m, 1H), 4.58 (d, J = 8.2 Hz, 1H), 5.96 (d, J = 15.8 Hz, 1H), 6.60 (dt, J = 15.8, 7.3 Hz, 1H), 7.27 (d, J = 8.1 Hz, 2H), 7.73 (d, J = 8.1 Hz, 2H); 8, 0.88 (t, J = 6.7 Hz, 3H), 1.05-1.41 (m, 24H), 2.09 (s, 3H), 2.33 (t, J = 6.9 Hz, 2H), 2.42 (s, 3H), 3.15-3.22 (m, 1H), 4.40 (d, J = 8.1 Hz, 1H), 7.29 (d, J = 8.1 Hz, 2H), 7.75 (d, J = 8.4 Hz, 2H); 9, 0.88 (t, J = 6.7 Hz, 3H), 1.26 (s, br, 20H), 1.05-1.90 (m, 4H), 2.12 (s, br, 3H), 2.40 (s, 3H), 4.04-4.18 (m, 1H), 4.99-5.06 (m, 1H), 7.27 (d, J = 8.1 Hz, 2H), 7.66 (d, J = 8.1 Hz, 2H).

- Reduction of 9 with NaCNBH₃/TFA at -45°C gave the *trans* and *cis* N-tosyl piperidines 10 and 11. The crude oil was purified over silica gel (eluent, hexane: EtOAc 4:1). The isomer ratio was estimated from the intensity of the C2-H and Me signals. ¹H-NMR (400 MHz, CDCl₃) 0.88 (t, J = 6.8 Hz, 3H), 1.23 (d, J = 6.9 Hz, 0.78 x 3H, *trans* isomer), 1.25 (m, br, 18H), 1.30 (d, J = 6.9 Hz, 0.22 x 3H, *cis* isomer), 1.35-1.82 (m, 8H), 2.40 (s, 3H), 3.56-3.67 (m, 0.78H, *trans* isomer), 3.93-4.01 (m, 0.22H, *cis* isomer), 4.10-4.20 (m, 1H), 7.25 (d, J = 8.4 Hz, 2H), 7.71 (d, J = 8.4 Hz, 2H).
- 13. A pure sample of the *cis* isomer (11) was obtained by hydrogenation of 9 over 10% Pd/C in MeOH.
 ¹H-NMR (400 MHz, CDCl₃): 0.89 (t, J = 6.8 Hz, 3H), 1.20-1.41 (m, 20H), 1.30 (d, J = 6.9 Hz, 3H), 1.46-1.80 (m, 6H), 2.41 (s, 3H), 3.92-3.99 (m, 1H), 4.10-4.18 (m, 1H), 7.26 (d, J = 8.4 Hz, 2H), 7.71 (d, J = 8.4 Hz, 2H).
- 14. Good separation was obtained by using basic aluminum oxide, Fluka, type 5016, and eluting with Et₂O and then Et₂O containing 1% *i*-PrNH₂. The *cis* isomer (12), isosolenopsin A, was also obtained as an oil (17% yield): HCl salt [α]_D²² = -10.6° (c = 0.33, CHCl₃); IR 2927, 2854, 1602, 1461, 1377, 1261, 1097, 1016, 937, 875, 804; ¹H-NMR (200 MHz, CDCl₃): 0.86 (t, J = 6.8 Hz, 3H), 1.06 (d, J = 6.2 Hz, 3H), 1.24 (s, br, 18H), 1.30-1.98 (m, 9H), 2.41-2.52 (m, 1H), 2.53-2.70 (m, 1H); ¹³C-NMR (50 MHz, CDCl₃): 14.06, 22.63, 22.90, 24.76, 25.93, 29.29, 29.55, 29,58, 29.61, 29.77, 31.86, 32.02, 34.22, 37.24, 52.47, 57.11.
- 15. Pure solenopsin A (1) was isolated as an oil in 72% yield: $[\alpha]_D{}^{20} = -1.30^{\circ}$ (c = 1.3, MeOH), lit.⁷ $[\alpha]_D{}^{23} = -2.2^{\circ}$ (c = 0.8, MeOH); HCl salt m.p. 147-150°C, lit.⁵ 146°C; HCl salt $[\alpha]_D{}^{20} = -7.7^{\circ}$ (c = 0.51, CHCl₃), lit.⁷ $[\alpha]_D{}^{23} = -7.6^{\circ}$ (c = 0.7, CHCl₃); free base, ¹H-NMR (400 MHz, CDCl₃): 0.88 (t, *J* = 6.8 Hz, 3H), 1.07 (d, *J* = 6.6 Hz, 3H), 1.26 (s, br, 18H), 1.38-1.70 (m, 9H), 2.83-2.90 (m, 1H), 3.12-3.20 (m, 1H); ¹³C-NMR (100 MHz, CDCl₃): 14.08, 19.58, 21.24, 22.66, 26.46, 29.33, 29.62, 29.64, 29.78, 30.82, 31.90, 33.01, 34.10, 45.82, 50.82; MS 252 (42), 238 (100), 224 (11), 210 (22), 184 (38), 98 (99); Anal. calcd for HCl salt, C₁₇H₃₆ClN: C, 70.43; H, 12.52; N, 4.83; found C, 70.24; H, 12.40; N, 4.72;
- 16. F. Johnson, Chem. Rev. 1968, 68, 375.

(Received in Germany 8 February 1993)